State of the Beach/State Reports/VI/Beach Ecology

From Beachapedia

Home Beach Indicators Methodology Findings Beach Manifesto State Reports Chapters Perspectives Model Programs Bad and Rad Conclusion


US Virgin Islands Ratings
Indicator Type Information Status
Beach Access--
Water Quality--
Beach Erosion--
Erosion Response--
Beach Fill--
Shoreline Structures- -
Beach Ecology--
Surfing Areas--
Website--
Coastal Development{{{19}}}{{{20}}}
Sea Level Rise{{{21}}}{{{22}}}
Special comments:

The State of the Beach report is being expanded to include the US Virgin Islands in 2011. Ratings will be assigned as the evaluation of the status of coastal policies and the coastal management program of the Virgin Islands progresses.

Introduction

To the casual observer, beaches may simply appear as barren stretches of sand - beautiful, but largely devoid of life or ecological processes. In reality, nothing could be further from the truth. Sandy beaches not only provide habitat for numerous species of plants and animals, they also serve as breeding grounds for many species that are not residential to the beach. Additionally, beaches function as areas of high primary production. Seaweeds and other kinds of algae flourish in shallow, coastal waters, and beaches serve as repositories for these important inputs to the food chain. In this way, beaches support a rich web of life including worms, bivalves, and crustaceans. This community of species attracts predators such as seabirds, which depend on sandy beaches for their foraging activities. In short, sandy beaches are diverse and productive systems that serve as a critical link between marine and terrestrial environments.

Erosion of the beach, whether it is “natural” erosion or erosion exacerbated by interruptions to historical sand supply, can negatively impact beach ecology by removing habitat. Other threats to ecological systems at the beach include beach grooming and other beach maintenance activities. Even our attempts at beach restoration may disrupt the ecological health of the beach. Imported sand may smother natural habitat. The grain size and color of imported sand may influence the reproductive habits of species that utilize sandy beaches for these functions.

In the interest of promoting better monitoring of sandy beach systems, the Surfrider Foundation would like to see the implementation of a standardized methodology for assessing ecological health. We believe that in combination, the identified metrics such as those described below can function to provide a revealing picture of the status of beach systems. We believe that a standardized and systematic procedure for assessing ecological health is essential to meeting the goals of ecosystem-based management. And, we believe that the adoption of such a procedure will function to better inform decision makers, and help bridge the gap that continues to exist between science and policy. The Surfrider Foundation proposes that four different metrics be used to complete ecological health assessments of sandy beaches. These metrics include

  1. quality of habitat,
  2. status of ‘indicator’ species,
  3. maintenance of species richness, and
  4. management practices.


It is envisioned that beach systems would receive a grade (i.e., A through F), which describes the beach’s performance against each of these metrics. In instances where information is unavailable, beaches would be assigned an incomplete for that metric. Based on the beach’s overall performance against the four metrics, an “ecological health” score would be identified.


Policies

Inventory

NOAA's Environmental Sensitivity Index (ESI) maps provide a concise summary of coastal resources that are at risk if an oil spill occurs nearby. Examples of at-risk resources include biological resources (such as birds and shellfish beds), sensitive shorelines (such as marshes and tidal flats), and human-use resources (such as public beaches and parks).

The National Oceanic and Atmospheric Administration's Coastal Services Center, in partnership with NatureServe and others are developing the Coastal and Marine Ecological Classification Standard (CMECS), a standard ecological classification system that is universally applicable for coastal and marine systems and complementary to existing wetland and upland systems.


Contact Info

State of the Beach Report: US Virgin Islands
US Virgin Islands Home Beach Description Beach Access Water Quality Beach Erosion Erosion Response Beach Fill Shoreline Structures Beach Ecology Surfing Areas Website
2011 7 SOTB Banner Small.jpg